Sierpiński and Carmichael numbers
نویسندگان
چکیده
We establish several related results on Carmichael, Sierpiński and Riesel numbers. First, we prove that almost all odd natural numbers k have the property that 2nk + 1 is not a Carmichael number for any n ∈ N; this implies the existence of a set K of positive lower density such that for any k ∈ K the number 2nk + 1 is neither prime nor Carmichael for every n ∈ N. Next, using a recent result of Matomäki, we show that there are x1/5 Carmichael numbers up to x that are also Sierpiński and Riesel. Finally, we show that if 2nk+ 1 is Lehmer, then n 6 150ω(k)2 log k, where ω(k) is the number of distinct primes dividing k.
منابع مشابه
Lucas-sierpiński and Lucas-riesel Numbers
In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.
متن کاملHigher-order Carmichael numbers
We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indica...
متن کاملHigher - Order Carmichael Numbers Everett
We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indic...
متن کامل1 99 8 Higher - Order Carmichael Numbers Everett
We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indic...
متن کاملOn Powers Associated with Sierpiński Numbers, Riesel Numbers and Polignac’s Conjecture
We address conjectures of P. Erdős and conjectures of Y.-G. Chen concerning the numbers in the title. We obtain a variety of related results, including a new smallest positive integer that is simultaneously a Sierpiński number and a Riesel number and a proof that for every positive integer r, there is an integer k such that the numbers k, k2, k3, . . . , kr are simultaneously Sierpiński numbers.
متن کامل